Abstract

This study proposes a hybrid simulation (HS) method for pantograph/catenary systems based on a dynamically substructured system (DSS) framework. In this method, the contact force between an actual pantograph and a hydraulic actuator is utilized to calculate the motion of the catenary in real-time, whilst the actuator is driven according to the calculated motion of the catenary. The advantage of the proposed method, when compared with commonlyused methods such as the inverse transfer function approach, is that DSS is better able to avoid instability that can be caused, for example, by pure delay characteristics in the actuator dynamics. The proposed method is also able to accurately represent dynamic interaction between the pantograph and the catenary. In this paper, the DSS methodology is introduced and then the proposed method is validated via simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.