Abstract
Red supergiants with their enormous brightness at J-band are ideal probes of cosmic chemical composition. It is therefore crucial to have realistic models of radiative transfer in their atmospheres, which will permit determination of abundances accurate to 0.15 dex, the precision attainable with future telescope facilities in galaxies as distant as tens of Mpc. Here, we study the effects of non-local thermodynamic equilibrium (NLTE) on the formation of iron, titanium, and silicon lines, which dominate J-band spectra of red supergiants. It is shown that the NLTE radiative transfer models enable accurate derivation of metallicity and effective temperature in the J-band. We also discuss consequences for RSG spectrum synthesis in different spectral windows, including the heavily TiO-blanketed optical region, and atmospheric structure. We then touch upon challenges of NLTE integration with new generation of 3D hydrodynamical RSG models and present the first calculations of NLTE spectra with the mean 3D model of Betelgeuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.