Abstract

This paper deals with the problem of computing an L/sub 2/-optimal reduced-order model for a given stable multivariable linear system. By way of an orthogonal projection the problem is formulated as that of minimizing the L/sub 2/ model reduction cost over the Stiefel manifold so that the stability constraint on reduced-order models is automatically satisfied and thus totally avoided in the new problem formulation. The closed form formula for the gradient of the cost over the manifold is derived, from which a gradient flow is formed as an ordinary differential equation. A number of nice properties about such a flow are obtained. Among them are the decreasing property of the cost along the ODE solution and the convergence of the flow from any starting point in the manifold. Furthermore, an explicit iterative convergent algorithm is developed from the flow and inherits the properties that the iterates remain on the manifold starting from any orthogonal initial point and that the model-reduction cost decreases to minimums along the iterates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.