Abstract

Summary It is well known that the sample correlation coefficient between many financial return indices exhibits substantial variation on any reasonable sampling window. This stylised fact contradicts a unit root model for the underlying processes in levels, as the statistic converges in probability to a constant under this modeling scheme. In this paper, we establish asymptotic theory for regression in local stochastic unit root (LSTUR) variables. An empirical application reveals that the new theory explains very well the instability, in both sign and scale, of the sample correlation coefficient between gold, oil, and stock return price indices. In addition, we establish spurious regression theory for LSTUR variables, which generalises the results known hitherto, as well as a theory for balanced regression in this setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.