Abstract
Malaria prevails in subtropical countries where health monitoring facilities are minimal. Time series prediction models are required to forecast malaria and minimize the effect of this disease on the population. This study proposes a novel scalable framework to predict the instances of malaria in selected geographical locations. Satellite data and clinical data, along with a long short-term memory (LSTM) classifier, were used to predict malaria abundances in the state of Telangana, India. The proposed model provided a 12 months seasonal pattern for selected regions in the state. Each region had different responses based on environmental factors. Analysis indicated that both environmental and clinical variables play an important role in malaria transmission. In conclusion, the Apache Spark-based LSTM presents an effective strategy to identify locations of endemic malaria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.