Abstract
Traffic flow prediction is an important part of the intelligent transportation system. Accurate traffic flow prediction is of great significance for strengthening urban management and facilitating people’s travel. In this paper, we propose a model named LST-GCN to improve the accuracy of current traffic flow predictions. We simulate the spatiotemporal correlations present in traffic flow prediction by optimizing GCN (graph convolutional network) parameters using an LSTM (long short-term memory) network. Specifically, we capture spatial correlations by learning topology through GCN networks and temporal correlations by embedding LSTM networks into the training process of GCN networks. This method improves the traditional method of combining the recurrent neural network and graph neural network in the original spatiotemporal traffic flow prediction, so it can better capture the spatiotemporal features existing in the traffic flow. Extensive experiments conducted on the PEMS dataset illustrate the effectiveness and outperformance of our method compared with other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.