Abstract
Synthetic aperture radar (SAR) ship detection has been the focus of many previous studies. Traditional SAR ship detectors face challenges in complex environments due to the limitations of manual feature extraction. With the rise of deep learning (DL) techniques, SAR ship detection based on convolutional neural networks (CNNs) has achieved significant achievements. However, research on CNN-based SAR ship detection has mainly focused on improving detection accuracy, and relatively little research has been conducted on reducing computational complexity. Therefore, this paper proposes a lightweight detector, LssDet, for SAR ship detection. LssDet uses Shufflenet v2, YOLOX PAFPN and YOLOX Decopuled Head as the baseline networks, improving based on the cross sidelobe attention (CSAT) module, the lightweight path aggregation feature pyramid network (L-PAFPN) module and the Focus module. Specifically, the CSAT module is an attention mechanism that enhances the model’s attention to the cross sidelobe region and models the long-range dependence between the channel and spatial information. The L-PAFPN module is a lightweight feature fusion network that achieves excellent performance with little computational effort and a low parametric count. The Focus module is a low-loss feature extraction structure. Experiments showed that on the Sar ship detection dataset(SSDD), LssDet’s computational cost was 2.60 GFlops, the model’s volume was 2.25 M and AP@[0.5:0.95] was 68.1%. On the Large-scale SAR ship detection dataset-v1.0 (LS-SSDD-v1.0), LssDet’s computational cost was 4.49 GFlops, the model’s volume was 2.25 M and AP@[0.5:0.95] was 27.8%. Compared to the baseline network, LssDet had a 3.6% improvement in AP@[0.5:0.95] on the SSDD, and LssDet had a 1.5% improvement in AP@[0.5:0.95] on the LS-SSDD-v1.0. At the same time, LssDet reduced Floating-point operations per second (Flops) by 7.1% and Paraments (Params) by 23.2%. Extensive experiments showed that LssDet achieves excellent detection results with minimal computational complexity. Furthermore, we investigated the effectiveness of the proposed module through ablation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.