Abstract

Assessing the importance of spreaders in networks is crucial for investigating the survival and robustness of networks. There are numerous potential applications, such as preventing outbreaks, spreading viruses on computer networks, viral marketing, and sickness spreading. These problems are usually unable to be solved by many heuristics with low time complexity. A number of tentative heuristics have been proposed for different application scenarios. However, we still lack an efficient heuristic to solve this type of problem effectively, for instance, low rating accuracy or high time complexity. To deal with this issue, this paper proposes a new heuristic called Locality-based Structure System (LSS), which is based on local information rather than global information of nodes in a network to determine the importance of spreaders. The proposed LSS takes into account the k-shell, degree, and number of triangles in a network. First, connectivity factors are computed based on the properties of nodes connected to them. Then, each node’s contribution to the importance of lines is computed. Finally, the degree and k-shell of nodes, as well as their contribution to the importance of lines, are taken into account. The proposed LSS is validated on a set of real and synthetic complex networks, where the simulation results under the standard SIR model and Kendall correlation coefficient indicate that LSS can efficiently identify influential spreaders in numerous types of networks without requiring any advanced parameter settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.