Abstract

Volatile organic acids are important compounds contained in human body odor. The detection and recognition of volatile organic acids in human body odor are significant in many areas. The present study explored a possibility to use localized surface plasmon resonance (LSPR) of Au nanoparticles (AuNPs) and molecularly imprinted sol-gels (MISGs) as the sensitive layer to recognize typical organic acid odorants, propanoic acid (PA), hexanoic acid (HA), heptanoic acid (HPA) and octanoic acid (OA), from human body. The LSPR layer was prepared by vacuum sputtering of AuNPs on a glass substrate and consequently thermal annealing. The sensitive layer was fabricated by spin-coating molecularly imprinted titanate sol-gel on the AuNPs layer. A homemade optical device was developed to detect the change of transmittance, which was caused by the index changes of organic acid vapors where selecting absorbed by the MISG layers. It was found that compared with MISG coated samples, samples coated with non-imprinted sol gel (NISG) shown no responses to any acid vapors. For the MISG coated sensors, the LSPR sensitivity was affected by the spin coating speed. In addition, a sensor array based on MISGs with different templates (HA, HPA and OA) was constructed to detect the organic acids in single and their binary mixtures. The sensor response was analyzed by principal component analysis (PCA) and linear discriminant analysis (LDA). A 100% classification rate was achieved by leave-one-out cross-validation technique for LDA model. This work demonstrated that the MISGs coated LSPR sensor array has a great potential in organic acid odor recognition of human body odor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.