Abstract

Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as 1/Eνr (r > 0). Since the neutrino energy in LSND is about 40 MeV, whereas MiniBooNE operates at around 1 GeV, oscillations get suppressed in MiniBooNE and the two results become fully compatible for r ≳ 0.2. Furthermore, also the global fit of all relevant data improves significantly by exploring the different energy regimes of the various experiments. The best fit χ2 decreases by 12.7 (14.1) units with respect to standard sterile neutrino oscillations if the mass (mixing) scales with energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.