Abstract

Symmetric cells of the configuration air/LSM//YSZ//LSM/air have been fabricated and electrically tested under impressed voltage conditions to understand the anode delamination behavior commonly observed during the operation of solid oxide electrolysis cells (SOEC). Electrical performance degradation has been measured with time at various applied voltages ranging from 0 to 0.8 V with respect to OCV, and cell component microstructural and chemical changes have been examined. Post-test observations indicate the development of a weak anode–electrolyte interface leading to the delamination of the anode from the electrolyte surface. Microstructural analysis of the anode–electrolyte interface revealed extensive morphological and chemical changes including the formation of lanthanum zirconate, an uneven porous interface, and localized grain boundary porosity in the electrolyte. An anode delamination mechanism based on morphological change and compound formation at the anode–electrolyte interface is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.