Abstract

Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD. LSEC phenotype was evaluated at early (2–8 week) and late (15–20 week) stages of NAFLD progression induced by HFD in male C57Bl/6 mice. NAFLD progression was monitored by insulin resistance, liver steatosis and obesity. LSEC phenotype was determined in isolated, primary LSECs by immunocytochemistry, mRNA gene expression (qRT-PCR), secreted prostanoids (LC/MS/MS) and bioenergetics (Seahorse FX Analyzer). LSEC morphology was examined using SEM and AFM techniques. Early phase of NAFLD, characterized by significant liver steatosis and prominent insulin resistance, was related with LSEC pro-inflammatory phenotype as evidenced by elevated ICAM-1, E-selectin and PECAM-1 expression. Transiently impaired mitochondrial phosphorylation in LSECs was compensated by increased glycolysis. Late stage of NAFLD was featured by prominent activation of pro-inflammatory LSEC phenotype (ICAM-1, E-selectin, PECAM-1 expression, increased COX-2, IL-6, and NOX-2 mRNA expression), activation of pro-inflammatory prostaglandins release (PGE2 and PGF2α) and preserved LSEC bioenergetics. Neither in the early nor in the late phase of NAFLD, were LSEC fenestrae compromised. In the early and late phases of NAFLD, despite metabolic and pro-inflammatory burden linked to HFD, LSEC fenestrae and bioenergetics are functionally preserved. These results suggest prominent adaptive capacity of LSECs that might mitigate NAFLD progression.

Highlights

  • The liver sinusoidal endothelial cells (LSECs), belonging to the group of liver non-parenchymal cells, comprise approximately 20% of the total number of liver cells (Sørensen et al, 2015)

  • Morphology measurements with atomic force microscopy (AFM) were in line with results obtained by scanning electron microscopy (SEM) because they confirmed that LSEC fenestrae were preserved even at the late stage of non-alcoholic fatty liver disease (NAFLD) in high fat diet (HFD) mice (Figure 6A)

  • We demonstrated that in HFD-induced NAFLD in mice, featured by prominent insulin resistance, liver steatosis and obesity, LSECs displayed a pro-inflammatory

Read more

Summary

INTRODUCTION

The LSECs, belonging to the group of liver non-parenchymal cells, comprise approximately 20% of the total number of liver cells (Sørensen et al, 2015). LSEC defenestration may represent an important pathogenic mechanism contributing to NAFLD development. This disease, ranging from simple steatosis, through steatosis with inflammation and fibrosis (NASH) may result in cirrhosis or hepatocellular carcinoma. Functional studies showed that the impairment in NO-dependent vasodilation response to insulin in the isolated liver was present as soon as after 3 days of HFD in rats, implying that LSEC dysfunction may be one of the earliest features of NAFLD (Pasarín et al, 2011). NAFLD-related impairment of LSEC function was linked to increased hepatic portal perfusion pressure and downregulation of the Akt/eNOS pathway that preceded liver inflammation and fibrosis (Pasarín et al, 2012). We simultaneously characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of HFD-induced NAFLD

MATERIALS AND METHODS
RESULTS
Findings
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call