Abstract

AbstractSeebeck coefficient S(T), thermal conductivity κ(T) and electrical resistivity ρ(T) measurements on polycrystalline La1.85Sr0.15CuO4-δ(LSCO) compounds grown by solid-state reaction method were carried out in the temperature range between 100 and 290K. The obtained samples were submitted to annealing processes of different duration in order to modify their oxygen stoichiometry. The Seebeck coefficient is positive over the measured temperature range and its magnitude increases with the annealing time up to reach values close to 150 µV/K. The electrical resistivity exhibits a metallic behavior, in all samples, ρ(T) takes values less than 1mΩ-cm. As the annealing time increases, the total thermal conductivity increases up to values close to 3 W/K-m. From S(T), κ(T) and ρ(T) data, the thermoelectric power factor (PF) and the dimensionless figure of merit (ZT) were determined. These parameters reach maximum values around 25 µW/K2-cm and 0.18, respectively. The observed behavior in the transport properties become these compounds potential thermoelectric materials, which could be used in low temperature thermoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call