Abstract
Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries. Typically, SFRC structures are manufactured by injection molding, which induces heterogeneous microstructures, and the resulting nonlinear anisotropic behaviors are challenging to predict by conventional micromechanical analyses. In this work, we present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) in the finite element simulation software LS-DYNA for structural analysis of SFRC. DMN is a physics-embedded machine learning model that learns the microscale material morphologies hidden in representative volume elements of composites through offline training. By coupling DMN with finite elements, we have developed a highly accurate and efficient data-driven approach, which predicts nonlinear behaviors of composite materials and structures at a computational speed orders-of-magnitude faster than the high-fidelity direct numerical simulation. To model industrial-scale SFRC products, transfer learning is utilized to generate a unified DMN database, which effectively captures the effects of injection molding-induced fiber orientations and volume fractions on the overall composite properties. Numerical examples are presented to demonstrate the promising performance of this LS-DYNA machine learning-based multiscale method for SFRC modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.