Abstract

Abstract Using the combinatorics of the underlying simplicial complex K, we give various upper and lower bounds for the Lusternik–Schnirelmann (LS) category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} . We describe families of simplicial complexes and combinatorial operations which allow for a systematic description of the LS-category. In particular, we characterize the LS-category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} over triangulated d-manifolds K for d ≤ 2 {d\leq 2} , as well as higher-dimensional spheres built up via connected sum, join, and vertex doubling operations. We show that the LS-category closely relates to vanishing of Massey products in H * ⁢ ( 𝒵 K ) {H^{*}(\mathcal{Z}_{K})} , and through this connection we describe first structural properties of Massey products in moment-angle manifolds. Some of the further applications include calculations of the LS-category and the description of conditions for vanishing of Massey products for moment-angle manifolds over fullerenes, Pogorelov polytopes and k-neighborly complexes, which double as important examples of hyperbolic manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.