Abstract
Following up on hints of anisotropy in the cosmic microwave background radiation (CMB) data, we investigate locally rotational symmetric (LRS) Bianchi type I spacetimes with non-minimally coupled scalar fields. To single out potentially more interesting solutions, we search for Noether symmetry in this system. We then specialize to the Brans-Dicke (BD) field in such a way that the Lagrangian becomes degenerate (nontrivial) and solve the equations for Noether symmetry and the potential that allows it. Then we find the exact solutions of the equations of motion in terms of three parameters and an arbitrary function. We illustrate with families of examples designed to be generalizations of the well-known power-expansion, exponential expansion and Big Rip models in the Friedmann-Robertson-Walker (FRW) framework. The solutions display surprising variation, a large subset of which features late-time acceleration as is usually ascribed to dark energy (phantom or quintensence), and is consistent with observational data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.