Abstract

In the current study, we studied a f Q -gravitational, anisotropic, locally rotationally symmetric (LRS), Bianchi type-I spacetime universe. We have adopted the freely chosen function f Q = Q + α Q , where α is a model-free parameter. We assumed that the universe is filled with dusty string fluid and that the shear scalar ( σ ) and the expansion scalar ( θ ) are proportional to each other in order to solve field equations for the average Hubble parameter ( H ). The resultant Hubble function has been fitted with observational datasets H z and SNe Ia datasets of apparent magnitude m z in order to obtain the best fit values for the cosmological parameters. Utilizing these best fit values throughout the analysis, many cosmic phenomena are examined. We have investigated cosmographic coefficients such as H , q , j , a n d s to see if an accelerated transit phase dark energy model of the cosmos exists. Also, we have classified the dark energy models that are explored using Om diagnostic analysis; our universe model is a quintessential dark energy model. The age of the universe as it exists right now has been roughly calculated by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.