Abstract

More than three decades after their first biophysical description, Volume Regulated Anion Channels (VRACs) still remain challenging to understand. Initially, VRACs were identified as the main pathway for the cell to extrude Cl- ions during the regulatory volume decrease (RVD) mechanism contributing in fine to the recovery of normal cell volume. For years, scientists have tried unsuccessfully to find their molecular identity, leading to controversy within the field that only ended in 2014 when two independent groups demonstrated that VRACs were formed by heteromers of LRRC8 proteins. This breakthrough gave a second breath to the research field and was followed by many publications regarding LRRC8/VRACs structure/ function, physiological roles and 3D structures. Nevertheless, far from simplifying the field, these discoveries have instead exponentially increased its complexity. Indeed, the channel's biophysical properties seem to be dependent on the LRRC8 subunits composition with each heteromer showing different ion/molecule permeabilities and regulatory mechanisms. One clear example of this complexity is the intricate relationship between LRRC8/VRACs and the redox system. On one hand, VRACs appear to be directly regulated by oxidation or reduction depending on their subunit composition. On the other hand, VRACs can also impact the redox balance within the cells, through their permeability to reduced glutathione or through other as yet uncharacterized pathways. Unravelling this issue is particularly crucial as LRRC8/VRACs play an important role in a wide variety of physiological processes involving oxidative stress signaling. In this regard, we have tried to systematically identify in the literature both preand post-LRRC8 discovery as well as the interplay between VRACs and the redox system to provide new insights into this complex relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.