Abstract

Telomere length maintenance in pluripotent stem cells (PSCs) is a main characteristic and a major premise for their undifferentiated long-term survival. However, little is known about the factors that control telomere length and elongation in these cells. Here, I describe Lrrc34 (leucine-rich repeat 34) as a novel telomere length regulating gene in murine embryonic stem cells. Downregulation of Lrrc34 results in significant reduction of telomerase activity and telomere length over time while also influencing the expression of known telomere length-associated genes. Generating induced PSCs (iPSCs) with Lrrc34 as a fifth factor in classical Yamanaka reprogramming increases the efficiency but did not have an impact on telomere length in the resulting iPSCs. Moreover, Lrrc34 was found to interact with Oct4, connecting the pluripotency network to telomere length regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call