Abstract

Transforming growth factor‑β1 (TGF-β1) is a versatile cytokine. It has context-dependent pro- and anti-cell proliferation functions. Activation of latent TGF-β1 requires release of the growth factor from pro-complexes and is regulated through TGF-β binding proteins. Two types of TGF-β binding partners, latent TGF-β-binding proteins (LTBPs) and leucine-rich-repeat-containing protein 32 (LRRC32), have been identified and their expression are cell specific. TGF-β1 also plays important roles in acute myeloid leukemia (AML) cells. However, the expression of LTBPs and LRRC32 are lacking in myeloid lineage cells and the binding protein of TGF-β1 in these cells are unknown. Here we show that a novel leucine-rich-repeat-containing protein family member, LRRC33, with high mRNA level in AML cells, to be the binding and regulating protein of TGF-β1 in AML cells. Using two representative cell lines MV4-11 and AML193, we demonstrate that the protein expression of LRRC33 and TGF-β1 are correlated. LRRC33 co-localizes and forms complex with latent TGF-β1 protein on the cell surface and intracellularly in these cells. Similar as in other cell types, the activation of TGF-β1 in MV4-11 and AML193 cells are also integrin dependent. We anticipate our study to be a starting point of more comprehensive research on LRRC33 as novel TGF-β regulating protein and potential non-genomic based drug target for AML and other myeloid malignancy.

Highlights

  • Transforming growth factor-β1 (TGF-β1) is the primary member of the large transforming growth factor-β (TGF-β) family which have crucial roles in multiple processes including cell proliferation, development, wound healing and immune responses [1, 2]

  • We showed that LRRC33 and pro-TGF-β1 co-localize and form a protein complex through disulfide bonds on the cell surface of two human acute myeloid leukemia cell lines: MV4-11 and AML193

  • By searching on the publicly available database Cancer Cell Line Encyclopedia (CCLE), we identified that lrrc33 mRNA level is the highest in 39 AML cell lines compared to cell lines of other types of cancers (Fig 1A)

Read more

Summary

Introduction

Transforming growth factor-β1 (TGF-β1) is the primary member of the large transforming growth factor-β (TGF-β) family which have crucial roles in multiple processes including cell proliferation, development, wound healing and immune responses [1, 2]. Abnormality of TGF-β function has been implicated in multiple human diseases, including fibrosis, autoimmune diseases and cancer [3]. TGF-β1 is synthesized and secreted in a latent, inactive complex, which contains dimerized non-covalently associated TGF-β1growth factor domain and a large prodomain, the latency associated peptide (LAP) [4]. LRRC33 is pro-TGF-β1 binding ligand in human acute myeloid leukemia cells β1 to indicate the furin-cleaved latent TGFβ protein. The pro-TGF-β1 latent protein does not have biological activity, the release of active TGF-β1 is a critical step for regulating TGFβ1 function in cell signaling

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call