Abstract

Eosinophilic esophagitis (EoE) is an allergic inflammatory disease of the esophagus featuring increased esophageal interleukin 13 (IL-13) levels and impaired barrier function. Herein, we investigated leucine-rich repeat–containing protein 31 (LRRC31) in human EoE esophageal tissue and IL-13–treated esophageal epithelial cells. LRRC31 had basal mRNA expression in colonic and airway mucosal epithelium. Esophageal LRRC31 mRNA and protein increased in active EoE and strongly correlated with esophageal eosinophilia and IL13 and CCL26 mRNA expression. IL-13 treatment increased LRRC31 mRNA and protein in air-liquid interface–differentiated esophageal epithelial cells (EPC2s). At baseline, differentiated LRRC31-overexpressing EPC2s had increased barrier function (1.9-fold increase in transepithelial electrical resistance [P < 0.05] and 2.8-fold decrease in paracellular flux [P < 0.05]). RNA sequencing analysis of differentiated LRRC31-overexpressing EPC2s identified 38 dysregulated genes (P < 0.05), including 5 kallikrein (KLK) serine proteases. Notably, differentiated LRRC31-overexpressing EPC2s had decreased KLK expression and activity, whereas IL-13–treated, differentiated LRRC31 gene-silenced EPC2s had increased KLK expression and suprabasal epithelial detachment. We identified similarly dysregulated KLK expression in the esophagus of patients with active EoE and in IL-13–treated esophageal epithelial cells. We propose that LRRC31 is induced by IL-13 and modulates epithelial barrier function, potentially through KLK regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call