Abstract

Re-epithelialization is a complex process during skin wound healing, and cell migration is an integral part of this phenomenon. Here we identified a role for LRG1 as a key regulator of epidermal keratinocyte migration where LRG1 acts via enhancement of HIF-1α stability. We showed that LRG1 is upregulated at murine skin wound edges and that addition of recombinant human LRG1 accelerates keratinocyte migration and skin wound healing. Furthermore, we identified transcription factor ELK3 as a downstream effector of LRG1. We confirmed that elevated ELK3 levels manipulated by LRG1 can promote cell migration through upregulation of HIF-1α stability. Because hyperglycemia complicatedly affects HIF-1α stability and activation, our findings provide insights into the molecular controls of wound-associated cell migration and identify potential therapeutic targets for the treatment of chronic diabetic wounds. In conclusion, we demonstrated that LRG1 promotes wound repair through keratinocyte migration and is important for normalization of an abnormal process of diabetic wound healing where HIF-1α stability is insufficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.