Abstract
Vascular dysfunction contributes to the pro-oncogenic tumor microenvironment and impedes the delivery of therapeutics. Normalizing the tumor vasculature has therefore become a potential therapeutic objective. We previously reported that the secreted glycoprotein, leucine-rich α-2-glycoprotein 1 (LRG1), contributes to the formation of pathogenic neovascularization. Here we show that in mouse models of cancer, Lrg1 is induced in tumor endothelial cells. We demonstrate that the expression of LRG1 impacts on tumor progression as Lrg1 deletion or treatment with a LRG1 function-blocking antibody inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function resulting in significantly enhanced efficacy of cisplatin chemotherapy, adoptive T-cell therapy and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent (cold) to immune active (hot). LRG1 therefore drives vascular abnormalization and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.