Abstract

Background and objectiveLiver reserve function should be accurately evaluated in patients with hepatic cellular cancer before surgery to evaluate the degree of liver tolerance to surgical methods. Meanwhile, liver reserve function is also an important indicator for disease analysis and prognosis of patients. Child-Pugh score is the most widely used liver reserve function evaluation and scoring system. However, this method also has many shortcomings such as poor accuracy and subjective factors. To achieve comprehensive evaluation of liver reserve function, we developed a deep learning model to fuse bimodal features of Child-Pugh score and computed tomography (CT) image. Methods1022 enhanced abdomen CT images of 121 patients with hepatocellular carcinoma and impaired liver reserve function were retrospectively collected. Firstly, CT images were pre-processed by de-noising, data amplification and normalization. Then, new branches were added between the dense blocks of the DenseNet structure, and the center clipping operation was introduced to obtain a lightweight deep learning model liver reserve function network (LRFNet) with rich liver scale features. LRFNet extracted depth features related to liver reserve function from CT images. Finally, the extracted features are input into a deep learning classifier composed of fully connected layers to classify CT images into Child-Pugh A, B and C. Precision, Specificity, Sensitivity, and Area Under Curve are used to evaluate the performance of the model. ResultsThe AUC by our LRFNet model based on CT image for Child-Pugh A, B and C classification of liver reserve function was 0.834, 0.649 and 0.876, respectively, and with an average AUC of 0.774, which was better than the traditional clinical subjective Child-Pugh classification method. ConclusionDeep learning model based on CT images can accurately classify Child-Pugh grade of liver reserve function in hepatocellular carcinoma patients, provide a comprehensive method for clinicians to assess liver reserve function before surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.