Abstract

In the field of autonomous driving, driving systems need to understand and quickly respond to changes in road scenes, which makes it equally important to enhance the accuracy and real-time performance of semantic segmentation tasks in road scenes. This article proposes a lightweight road scene semantic segmentation model LR3S that integrates global contextual information based on the DeepLabV3+ framework. LR3S utilizes a lightweight GhostNetV2 network as the backbone to capture rich semantic information in images, and uses ASPP_eSE module to enhance the capture of multi-scale and detail level semantic information. In addition, a lightweight CARAFE upsampling operator is utilized to upsample feature maps, taking advantage of CARAFE’s large receptive field and low computational cost to prevent the loss of fine-grained features and ensure the integrity of semantic information. Experimental results demonstrate that LR3S achieves an MIoU of 74.47% on the Cityscapes dataset and obtains an MIoU of 76.01% on the PASCAL VOC 2012 dataset. Compared to baseline semantic segmentation models, LR3S significantly reduces the parameter amount while maintaining segmentation accuracy, achieving a good balance between model accuracy and real-time performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.