Abstract

The rapid advances in computational methods for the drug design have resulted in the accurate predictions of biological activities of ligands with or without the availability of enzyme structures. 3D-QSAR is one of the computational methods used for such purpose. Currently, freely available 3D-QSAR methods suffer the limitations like complex methodologies, difficulty in the analysis of results, applying the statistical methods and validations of models built. Present work describes simple and novel 3D-QSAR methodology, which uses bash scripts LQTA_R_LJ, LQTA_R_QQ and LQTA_R_HB using freely available R statistical program. These scripts then generate Leenard-Jones, Coulomb and Hydrogen bond descriptors. These descriptors provide the steric 3D property, electrostatic property and hydrogen bond formation capacity respectively. These scripts have been tested for the set of DGAT1 inhibitors and results showed that the 3D-QSAR models built have better predictive abilities in terms of R2 0.735, Q2loo 0.635 and R2ext 0.715. The 3D-QSAR model suggested that the substitutions of the alkyl group at the oxadiazolyl ring at the 6th position of the pyrrolo-pyridazine ring is undesirable, on the contrary, substituted phenyl ring at 7th position is responsible for the improved DGAT1 inhibitory activity. The analysis also suggested that 6th position could be substituted with the oxadiazolyl ring or analogous heterocyclic rings, where the 3rd position of such heterocyclic rings substituted with rigid hydrophobic substitute can improve DGAT1 activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.