Abstract

A self-balancing bicycle robot based on the concept of an inverted pendulum is an unstable and nonlinear system. To stabilize the system in this work, the following three main components are required, i. e., (1) an IMU sensor that detects the tilt angle of the bicycle robot, (2) a controller that is used to control motion of a reaction wheel, and (3) a reaction wheel that is employed to produce reactionary torque to balance the bicycle robot. In this paper, we propose three control strategies: linear quadratic regulator (LQR), linear model predictive control (LMPC), and nonlinear model predictive control (NMPC). Several simulation tests have been conducted in order to show that our proposed control laws can achieve stabilizaton and make the system balance. Furthermore, LMPC and NMPC controllers can deal with state and input constraints explicitly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.