Abstract

This brief presents a new direct tilt control (DTC) design to improve the lateral stability and the driving comfort of narrow tilting vehicles. To this end, a conceptual model is constructed from the vehicle dynamics, a simplified model of the driving environment, and the vehicle perceived acceleration. This latter is considered as the main performance variable of the related $\mathcal {H}_{2}$ control problem. The conceptual model is then represented in a polytopic linear parameter varying (LPV) form for control purposes. To avoid the use of costly vehicle sensors while favoring the simplest control structure for real-time implementation, a new LPV static output feedback control method is proposed. Thanks to Lyapunov stability arguments, physical constraints on both system states and DTC actuator are explicitly considered in the design procedure to improve the safety and the comfort of passengers. Moreover, a parameter-dependent Lyapunov function is exploited for theoretical developments. In this way, the finite bounds on vehicle speed and acceleration are effectively taken into account in the control design to reduce the conservatism. The $\mathcal {H}_{2}$ control design is recast as a linear matrix inequality-based optimization which can be easily solved with numerical solvers. The resulting robust DTC controller is evaluated with realistic driving scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.