Abstract

This article addresses the design of a gain-scheduling type nonlinear controller for a full-vehicle active suspension system. The proposed method is based on a Linear Parameter Varying (LPV) model of the system. In this model, the variations in suspension deflection and mass are chosen as the scheduling parameters. During the simulations, the full-vehicle system that is controlled by the proposed method is tested with different road profiles, having high and low bumps, hollows and combinations of the two. The simulation results demonstrate that the proposed method successfully maximizes the ride comfort when suspension deflection is far away from the structural limits and minimizes the suspension deflection by changing its behavior when the suspension limits are reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.