Abstract

Although conventional PID-like SISO controllers are still most common in industry, there is a growing need for more advanced controller structures in order to comply with ever tighter performance requirements. In this paper we consider positioning devices in IC-manufacturing for which position-dependent plant dynamics are a performance limiting factor. We suggested to employ recently developed linear parameter varying (LPV) control techniques for designing position-dependent controllers that adapt themselves in order to achieve optimal closed-loop performance. Our main emphasis is on presenting a practical LPV design procedure which covers plant modeling, controller synthesis and actual implementation for an electromechanical positioning device, an advanced wafer-scanner. Our experimental results reveal that performance can be improved by LPV control if compared to a classical SISO design. We highlight a variety of troublesome aspects within the design cycle that lack a systematic theoretically founded solution and that limit the possible performance improvement achievable by LPV control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call