Abstract

Abstract. Dynamic global vegetation models are a common tool to assess the effect of climate and land use change on vegetation. Though most applications of dynamic global vegetation models use plant functional types, some also simulate species occurrences. While the current development aims to include more processes, e.g. the nitrogen cycle, the models still typically assume an ample seed supply allowing all species to establish once the climate conditions are suitable. Pollen studies have shown that a number of plant species lag behind in occupying climatological suitable areas (e.g. after a change in the climate) as they need to arrive at and establish in the newly suitable areas. Previous attempts to implement migration in dynamic vegetation models have allowed for the simulation of either only small areas or have been implemented as a post-process, not allowing for feedbacks within the vegetation. Here we present two novel methods simulating migrating and interacting tree species which have the potential to be used for simulations of large areas. Both distribute seeds between grid cells, leading to individual establishment. The first method uses an approach based on fast Fourier transforms, while in the second approach we iteratively shift the seed production matrix and disperse seeds with a given probability. While the former method is computationally faster, it does not allow for modification of the seed dispersal kernel parameters with respect to terrain features, which the latter method allows. We evaluate the increase in computational demand of both methods. Since dispersal acts at a scale no larger than 1 km, all dispersal simulations need to be performed at maximum at that scale. However, with the currently available computational power it is not feasible to simulate the local vegetation dynamics of a large area at that scale. We present an option to decrease the required computational costs through a reduction in the number of grid cells for which the local dynamics are simulated only along migration transects. Evaluation of species patterns and migration speeds shows that simulating along transects reduces migration speed, and both methods applied on the transects produce reasonable results. Furthermore, using the migration transects, both methods are sufficiently computationally efficient to allow for large-scale DGVM simulations with migration.

Highlights

  • A large suite of dynamic global vegetation models (DGVMs) is currently used to simulate the effects of climate and/or land use change on vegetation and ecosystem properties

  • Current DGVMs assume that ample amounts of seeds of all species are present in every location

  • The study comparing the performance of different migration mechanisms without the vegetation dynamics, implemented in MATLAB®, has shown that both the Fast Fourier transform method (FFTM) and the Seed matrix shifting method (SMSM) performed faster than the explicit dispersal from all grid cells to each other within the range of the dispersal (Fig. S2.6 in Supplement S2)

Read more

Summary

Introduction

A large suite of dynamic global vegetation models (DGVMs) is currently used to simulate the effects of climate and/or land use change on vegetation and ecosystem properties. These simulations result in projections (or hindcasts) of species ranges as well as changes in ecosystem properties such as carbon stocks and fluxes. Examples of these DGVMs include ORCHIDEE (Yue et al, 2018), LPJ-GUESS (Sitch et al, 2003), and IBIS (Foley et al, 1998; Sato et al, 2007); for a review of DGVM features, see Quillet et al (2010). Current DGVMs assume that ample amounts of seeds of all species are present in every location

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.