Abstract

RNA-Sequencing (RNA-Seq) provides valuable information for characterizing the molecular nature of the cells, in particular, identification of differentially expressed transcripts on a genome-wide scale. Unfortunately, cost and limited specimen availability often lead to studies with small sample sizes, and hypothesis testing on differential expression between classes with a small number of samples is generally limited. The problem is especially challenging when only one sample per each class exists. In this case, only a few methods among many that have been developed are applicable for identifying differentially expressed transcripts. Thus, the aim of this study was to develop a method able to accurately test differential expression with a limited number of samples, in particular non-replicated samples. We propose a local-pooled-error method for RNA-Seq data (LPEseq) to account for non-replicated samples in the analysis of differential expression. Our LPEseq method extends the existing LPE method, which was proposed for microarray data, to allow examination of non-replicated RNA-Seq experiments. We demonstrated the validity of the LPEseq method using both real and simulated datasets. By comparing the results obtained using the LPEseq method with those obtained from other methods, we found that the LPEseq method outperformed the others for non-replicated datasets, and showed a similar performance with replicated samples; LPEseq consistently showed high true discovery rate while not increasing the rate of false positives regardless of the number of samples. Our proposed LPEseq method can be effectively used to conduct differential expression analysis as a preliminary design step or for investigation of a rare specimen, for which a limited number of samples is available.

Highlights

  • High-throughput sequencing of cDNA derived from an RNA sample, known as RNA-Seq, has recently been developed and applied to various studies depending on the scientific interests such as detecting fusion genes, transcribed single nucleotide polymorphisms (SNPs), and PLOS ONE | DOI:10.1371/journal.pone.0159182 August 17, 2016Small Sample RNA-Seq Data Analysis Using local-pooled-error method for RNA-Seq data (LPEseq)

  • We investigated the performance of LPEseq regarding the true differentially expressed (DE) detection ahead of false discovery under 72 combinatorial cases of four different parameters, δ, φ, κ, and m

  • Even though edgeR performed superior than LPEseq in aspect of finding true DE transcripts, showing more than 97% true positive rate (TPR), FDR was not well-controlled

Read more

Summary

Objectives

The aim of this study was to develop a method able to accurately test differential expression with a limited number of samples, in particular non-replicated samples

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.