Abstract
The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries (LMBs). While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs. In this work, a Li-containing polyethylene oxide (LPEO) was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance, inhibiting the side reactions. Moreover, ether-oxygen bond on LPEO chain can coordinate with Li+ and guide the transportation of Li+, achieving fast Li+ diffusion between Li1+xAlxGe2-x(PO4)3 (LAGP) and electrodes. Specifically, the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification, which would lead to remarkable cycling stability and rate capability. Therefore, the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm−2. In addition, long-term performance of Li|LPEO-LAGP| LiFePO4 (LFP) battery was achieved at a rate of 0.4 C, and capacity retention is more than 74% after 200 cycles. The Li|LPEO-LAGP|LiNi0.8Co0.1Mn0.1O2 also realized the steady operation in the voltage range of 2.8–4.3 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.