Abstract

Lp to Lβp boundedness results are proven for translation invariant averaging operators over hypersurfaces in Euclidean space. The operators can either be Radon transforms or averaging operators with multiparameter fractional integral kernel. In many cases, the amount β>0 of smoothing proven is optimal up to endpoints, and in such situations this amount of smoothing can be computed explicitly through the use of appropriate Newton polyhedra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.