Abstract

BackgroundLOXL1 gene is the most important genetic risk factor known so far for pseudoexfoliation glaucoma (XFG). Our purpose was to evaluate the potential association of individual genetic variants of the lysyl oxidase-like 1 (LOXL1) gene and haplotypes with XFG in Spanish patients.MethodsBlood samples were collected from a total of 105 Spanish patients with XFG and 200 healthy controls. The entire LOXL1 gene along with the promoter, coding and non-coding regions including the 5´- and 3´-untranslated regions, were sequenced using next-generation sequencing in 99 XFG patients. SNPs rs16958477 (promoter), rs1048661 (exon 1), rs3825942 (exon 1), rs2165241 (intron 1) and rs3522 (exon 7) in LOXL1 were genotyped by restriction fragment-length polymorphism (RFLP) in all Spanish control participants and in six additional XFG patients, and a case–control association study was performed.Comparisons of the allelic and genotypic frequencies were performed using standard χ2 test with Bonferroni and Pearson corrections. Logistic regression analyses were permormed using Sigmaplot v11. Haplotypes frequencies were performed using HaploView 4.0.ResultsSequencing of the LOXL1 gene in XFG participants identified a total of 212 SNPs, of which 49 exhibited allelic frequencies with significant differences between cases and controls, and 66 were not previously described. The allele frequencies of SNPs rs16958477, rs1048661, rs3825942, rs2165241, were significantly associated with an increased risk for XFG, however the SNP rs3522 was not.The haplotype frequencies of SNPs rs16958477, rs1048661, rs3825942 and rs2165241 and their association with XFG indicated that the CGGT haplotype, containing all four risk alleles, and the AGGT haplotype, which carries the protective allele of rs16958477 and three risk alleles of the other three SNPs, were significantly associated with XFG (p = 4.5×10−6, and p = 8.8×10−6), conferring more than 2-fold increased disease susceptibility.ConclusionsSNPs of the LOXL1 gene are associated with XFG in the Spanish population. This information adds new support to the distinct risk association frequencies of LOXL1 alleles with XFG in Western European and Asian populations. Identification and validation of additional SNPs along the entire LOXL1 gene of XFG cases may provide insightful information on their potential role in the pathogenesis of this disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-015-0221-y) contains supplementary material, which is available to authorized users.

Highlights

  • lysyl oxidase-like 1 (LOXL1) gene is the most important genetic risk factor known so far for pseudoexfoliation glaucoma (XFG)

  • A preliminar sequencing analysis along the entire LOXL1 gene identified a total of 212 single nucleotide polymorphisms (SNPs), including, rs16958477, rs1048661, rs3825942, rs2165241, and rs3522, subjects of the present study

  • When the allele frequencies of the 212 SNPs were compared to those reported in the Haplotype Mapping Project (HapMap) CEU population study (Utah residents with Northern and Western European ancestry) [46], commonly used as control, significant differences were identified in 49 of them (p < 3.42×10−4), 66 were not described in the CEU population and 97 showed similar frequencies in both groups

Read more

Summary

Introduction

LOXL1 gene is the most important genetic risk factor known so far for pseudoexfoliation glaucoma (XFG). Our purpose was to evaluate the potential association of individual genetic variants of the lysyl oxidase-like 1 (LOXL1) gene and haplotypes with XFG in Spanish patients. In XFG patients, the deposition of exfoliation material in the anterior segment of the eye causes resistance to the outflow of aqueous humor, leading to elevated intraocular pressure and consequent glaucomatous optic neuropathy [15, 16]. XFG is characterized by rapid progression of glaucomatous optic nerve damage, poor response to medical treatment, and worse prognosis than primary open-angle glaucoma [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call