Abstract

In this paper, a novel error control strategy for electromagnetic nanonetworks, based on the utilization of low-weight channel codes and aimed at the prevention of channel errors, is proposed. In particular, it is first analytically shown that both the molecular absorption noise and the multi-user interference in nanonetworks can be mitigated by reducing the channel code weight, which results into a lower channel error probability. Then, the relation between the channel code weight and the code word length is analyzed for the case of utilizing constant weight codes. Finally, the performance of the proposed strategy is analytically and numerically investigated in terms of the achievable information rate after coding and the Codeword Error Rate (CER). Two different receiver architectures are considered, namely, an ideal soft-receiver and a hard receiver. An accurate Terahertz Band channel model and novel stochastic models for the molecular absorption noise and the multi-user interference, validated with COMSOL, are utilized. The results show that low-weight channel codes can be used to reduce the CER without compromising the achievable information rate or even increasing it, especially for the hard-receiver architecture. Moreover, it is shown that there is an optimal code weight, for which the information rate is maximized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call