Abstract

A simple technique to achieve low-voltage power-efficient class AB operational transconductance amplifiers (OTAs) is presented. It is based on the combination of class AB differential input stages and local common-mode feedback (LCMFB) which provides additional dynamic current boosting, increased gain-bandwidth product (GBW), and near-optimal current efficiency. LCMFB is applied to various class AB differential input stages, leading to different class AB OTA topologies. Three OTA realizations based on this technique have been fabricated in a 0.5-/spl mu/m CMOS technology. For an 80-pF load they show enhancement factors of slew rate and GBW of up to 280 and 3.6, respectively, compared to a conventional class A OTA with the same 10-/spl mu/A quiescent currents and /spl plusmn/1-V supply voltages. In addition, the overhead in terms of common-mode input range, output swing, silicon area, noise, and static power consumption, is minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call