Abstract

In this paper low voltage single crystal actuators were investigated using thin PMN-PT plates for applications requiring low voltage, large strain, low profile and/or actuation at cryogenic temperatures. Firstly, single crystal thickness effect on piezoelectric properties was studied by investigating the relationship between electromechanical coupling coefficient of PMN-PT crystals and the crystal thickness. It was found that electromechanical coupling coefficient (kt) of 50 μm, 75 μm and 100 μm PMN-PT single crystal thin plates are 0.5, 0.51, and 0.55, respectively, which are slightly lower than that of bulk single crystal (0.6). A couple of single crystal actuators were then assembled using crystal plates with thickness of 150-200 μm. These actuators were characterized by measuring strain vs. electric field at room temperature and cryogenic temperatures. A 3 mm x 3 mm x 19 mm single crystal stack actuator showed a 21 μm stroke at room temperature under 150 V, and a 10 μm stroke at 60 K under 200 V. A 5 mm x 5 mm x 12 mm single crystal actuator showed 13.5 μm stroke at room temperature under 150 V, and 6 μm stroke at 77 K under 150 V. These low voltage actuators hold promising for space precise positioning and adaptive structures and cryogenic SEM, SPM and STM applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call