Abstract

A low-voltage programmable gate-all-around (GAA) nanosheet poly-Si thin-film transistor (TFT) nonvolatile memory (NVM), which uses band-to-band tunneling induced hot electron (BBHE) programming, is demonstrated. The BBHE method is extremely efficient for programming data in the p-type GAA nanosheet TFT NVM because the GAA nanosheet structure enhances the source-to-drain component of the electric field in its channel. Therefore, the enhanced electric field of the BBHE phenomenon creates energetic electrons that surmount the tunneling oxide barrier easily and pass shallow traps in the charge trapping layer of the GAA TFT NVM. Consequently, the p-type GAA TFT NVM achieves low-voltage programming bias and satisfactory data retention

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call