Abstract

Spray drying is a widely used process to produce pharmaceutical powders. In traditional spray drying, the particle size distribution is wide and not well controlled. Using EHD atomization for spray drying offers a possibility to tailor the particle size and morphology. In conventional EHD spray drying, the generated particles are charged and need to be discharged to avoid Rayleigh breakup. Discharging adds complexity to the process and eliminates the possibility to collect the powder using an electric field. The present work describes a novel EHD spray drying setup based on a low-voltage nozzle. The low-voltage nozzle imparts moderate charge to the droplets, which makes discharging unnecessary. The charged particles can be controlled and collected by using an auxiliary electric field. The EHD spray dryer has been characterized in terms of particle size, particle morphology, process output, and yield. The size distribution of the generated particles is very narrow. Both porous and completely spherical particles can be produced. The yield of small-scale bench-top equipment was 20%, which is similar to the yield of a small-scale conventional spray dryer. The effective output with five nozzles was 75 mg/hr of dry powder. Because of the repelling forces associated with the unipolarly charged droplets, the number of nozzles can be increased without risking coalescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.