Abstract

The ongoing collision between the Indian and Eurasian plates propels the eastward movement of the Tibetan plateau (TP), leading to substantial crustal deformation around the southern Sichuan-Yunnan block (SYB). Using ambient noise data from multiple temporary seismic arrays and permanent stations, we construct a high-resolution regional crustal azimuthally anisotropic Vs model in the SYB. Our new model reveals two significant low-velocity anomalies with strong azimuthal anisotropy near the block boundary faults in the middle-and-lower crust. The extensive low-velocity anomalies around the middle-south segment of the Xiaojiang Fault (XJF) possibly result from partial melting due to spontaneous deformation caused by crustal thickening and increased felsic components, as well as the superimposition of shear heating faults and local upwelling asthenosphere. The N‒S trending low-velocity anomaly at the northwest end of the Red River Fault (RRF) may be associated with weak material migration from the TP, potentially serving as a conduit for mantle upwelling. The azimuthal anisotropy along the block boundary faults exhibits spatial variations linked to segmented distortion resulting from southeastward crustal movement and various geological activities. A key finding is that the crustal channelized low-velocity along the XJF is clearly blocked by the RRF, instead of going through. Notably, the azimuthal anisotropy in the E‒W direction, observed above the Moho and at depths deeper than 30 km in the intersection end, implies the potential intrusion of localized mantle materials into the lower crust. Therefore, lithospheric deformation is significantly affected by block boundary faults and the properties of the crust and mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.