Abstract

algorithm is used together with calculus of variations to optimize an interplanetary trajectory for the Bryson-Ho Earth-to-Mars orbit transfer problem. The global search properties of genetic algorithm combine with the local search capabilities of calculus of variations to produce solutions that are superior to those generated with the calculus of variations alone, and these solutions require less user interaction than previously possible. The genetic algorithm is not hampered by ill-behaved gradients and is relatively insensitive to problems with a small radius of convergence, allowing it to optimize trajectories for which solutions had not yet been obtained. The use of the calculus of variations within the genetic algorithm optimization routine increased the precision of the final solution to levels uncommon for a genetic algorithm. Keywordsoptimization, Genetic algorithms, Hybrid methods, Orbit transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.