Abstract
We demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) gas sensor that uses tin monoxide (SnO) for both the channel and sensing layers. The fabricated SnO TFT showed a maximum response value of 19.4-10 ppm NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> at room temperature (RT) when operated in the subthreshold region, which was significantly higher than the maximum response value of 2.8-10 ppm NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> obtained with a SnO thin-film chemiresistor at RT. In addition, the SnO TFT gas sensor showed significantly higher sensitivity to NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas than to other target gases such as NH3, H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> S, CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , and CO at RT. To our knowledge, this is the first report on a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnO TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.