Abstract

A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO 2 fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO 2 surrogate in this study, was well distributed in the pellet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.