Abstract

Crystalline boron carbide (B4C) powder was synthesized by the carbothermal reduction of a condensed product formed from boric acid (H3BO3) and glycerin (C3H8O3). The condensed product was prepared by dehydration after directly mixing equimolar amounts of H3BO3 and glycerin, which was followed by pyrolysis in air to obtain a precursor powder from which the excess carbon had been eliminated. The prepared precursor powder had a bicontinuous boron oxide (B2O3)/carbon network structure. Crystalline B4C powder without residual carbon was successfully synthesized from this precursor powder by heating at 1250°C for 5h in an Ar flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.