Abstract

LiSn2P3O12 with sodium (Na) super ionic conductor (NASICON)-type rhombohedral structure was successfully obtained at low sintering temperature, 600 °C via citric acid-assisted sol-gel method. However, when the sintering temperature increased to 650 °C, triclinic structure coexisted with the rhombohedral structure as confirmed by X-ray diffraction analysis. Conductivity–temperature dependence of all samples were studied using impedance spectroscopy in the temperature range 30 to 500 °C, and bulk, grain boundary and total conductivity increased as the temperature increased. The highest bulk conductivity found was 3.64 × 10−5 S/cm at 500 °C for LiSn2P3O12 sample sintered at 650 °C, and the lowest bulk activation energy at low temperature was 0.008 eV, showing that sintering temperature affect the conductivity value. The voltage stability window for LiSn2P3O12 sample sintered at 600 °C at ambient temperature was up to 4.4 V. These results indicated the suitability of the LiSn2P3O12 to be exploiting further for potential applications as solid electrolytes in electrochemical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.