Abstract
Protein synthesis is a fundamental and energetically expensive physiological process in all living organisms. Very few studies have examined the specific challenges of manufacturing proteins at low ambient temperatures. At high southern latitudes, water temperatures are continually below or near freezing and are highly stable, while food availability is very seasonal. To examine the effects of low temperature and a highly seasonal food supply on protein metabolism, we have measured wholebody protein synthesis, RNA concentrations, RNA:protein ratios and RNA translational efficiencies in the Antarctic limpet Nacella concinna at four times of the year. From summer to winter, protein synthesis rates decreased by 52%, RNA concentrations decreased by 55% and RNA:protein ratios decreased by 68%, while RNA translational efficiencies were low and very variable. Protein synthesis rates in N. concinna approached those measured in temperate mussels, while RNA:protein ratios were considerably higher than in temperate species. Interspecific comparisons show that species living at low temperatures have elevated RNA:protein ratios, which are probably needed to counteract a thermally induced reduction in RNA translational efficiency. Calculations using theoretical energetic costs of protein synthesis suggest that Antarctic species may allocate a larger proportion of their metabolic budget to protein synthesis than do temperate or tropical species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.