Abstract

The post-treatment of domestic sewage pretreated in a 6 m3 UASB was investigated in two high-rate anaerobic filter (AF) reactors operated in parallel. The difference between the two AF reactors was only the addition of cationic polymer to the second reactor (AF + P). The reactors were operated at low temperatures, ranged between 13 and 20 degrees C. The media in each AF reactor consisted of vertical sheets of reticulated-polyurethane foam (RPF) with knobs. The results demonstrated that the AF + P reactor (HRT = 3 h) with cationic polymer addition (2 mg/L) was an efficient system for post-treatment. The removal efficiencies for total, suspended, colloidal and dissolved COD were, respectively, 41, 86 and 76 and 12% in the AF + P reactor and they were, respectively, 80, 97, 77 and 66% in the UASB + (AF + P) system. The removal of total, suspended and colloidal COD in the UASB + (AF + P) system were significantly higher than those achieved in the UASB + AF system. As hardly any nutrient was removed in the UASB + (AF + P) system, the effluent after pathogen removal is a valuable product for irrigation and fertilisation to close the water and nutrients cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call