Abstract

Although it has been well established that acclimation to low growth temperatures is strongly correlated with an increased proportion of reduced QA in all photosynthetic groups, the precise mechanism controlling the redox state of QA and its physiological significance in developing cold tolerance in photoautotrophs has not been fully elucidated. Our recent thermoluminescence (TL) measurements of the acceptor site of PSII have revealed that short‐term exposure of the cyanobacterium Synechococcus sp. PCC 7942 to cold stress, overwintering of Scots pine (Pinus sylvestris L.), and acclimation of Arabidopsis plants to low growth temperatures, all caused a substantial shift in the characteristic TM of S2QB– recombination to lower temperatures. These changes were accompanied by much lower overall TL emission, restricted electron transfer between QA and QB, and in Arabidopsis by a shift of the S2QA–‐related peak to higher temperatures. The shifts in recombination temperatures are indicative of a lower activation energy for the S2QB– redox pair and a higher activation energy for the S2QA– redox pair. This results in an increase in the free‐energy gap between P680+QA– and P680+Pheo– and a narrowing of the free energy gap between QA and QB electron acceptors. We propose that these effects result in an increased population of reduced QA (QA–), facilitating non‐radiative P680+QA– radical pair recombination within the PSII reaction centre. The proposed reaction centre quenching could be an important protective mechanism in cyanobacteria in which antenna and zeaxanthin cycle‐dependent quenching are not present. In herbaceous plants, the enhanced capacity for dissipation of excess light energy via PSII reaction centre quenching following cold acclimation may complement their capacity for increased utilization of absorbed light through CO2 assimilation and carbon metabolism. During overwintering of evergreens, when photosynthesis is inhibited, PSII reaction centre quenching may complement non‐photochemical quenching within the light‐harvesting antenna when zeaxanthin cycle‐dependent energy quenching is thermodynamically restricted by low temperatures. We suggest that PSII reaction centre quenching is a significant mechanism enabling cold‐acclimated organisms to acquire increased resistance to high light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.