Abstract

This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78 K to 380 K. A polynomial equation of heat capacities as a function of temperature was fitted by the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K. The constant-volume energy of combustion of the compound was determined by means of a precision rotating-bomb combustion calorimeter. The standard molar enthalpy of combustion of the compound was derived from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound was calculated from a combination of the datum of the standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.